class OctaveBandProcessor extends AudioWorkletProcessor { constructor() { super(); // Define center frequencies for 9 octave bands this.centerFrequencies = [63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000]; this.filters = []; this.lastUpdateTimestamp = 0; this.updateInterval = 0.125; // Update every 0.125 seconds // Create an A-weighting filter for specific frequencies this.createAWeightingFilter(); // Create bandpass filters for each center frequency this.centerFrequencies.forEach(frequency => { const filter = new BiquadFilterNode(audioContext, { type: 'bandpass', frequency: frequency, Q: 1.41, // Set the desired Q value }); this.filters.push(filter); }); // Set up analyzers for calculating percentiles this.setupAnalyzers(); } createAWeightingFilter() { // Use the provided A-weighting filter coefficients const aWeightingCoefficients = [0, -0.051, -0.142, -0.245, -0.383, -0.65, -1.293, -2.594, -6.554]; //David // Create a custom IIR filter node with the A-weighting coefficients this.aWeightingFilter = new IIRFilterNode(audioContext, { feedforward: aWeightingCoefficients, feedback: [1], }); } setupAnalyzers() { this.analyzers = []; this.centerFrequencies.forEach((frequency) => { this.analyzers.push([]); for (let i = 0; i < 5; i++) { // Unique identifiers from 0 to 4 const analyzer = audioContext.createAnalyser(); analyzer.fftSize = 2048; // Check if the identifier is 0 (microphone audio) before connecting to the A-weighting filter if (i === 0) { this.aWeightingFilter.connect(analyzer); } this.analyzers[this.analyzers.length - 1].push(analyzer); } }) } process(inputs, outputs) { const numOutputChannels = outputs.length; for (let i = 0; i < numOutputChannels; i++) { const outputChannel = outputs[i][0]; const inputChannel = inputs[i][0]; // Apply the filter to the input channel const filteredSignal = this.filters[i].process(inputChannel); // Apply A-weighting only to the microphone signal (channel 0) if (i === 0) { const aWeightedSignal = this.aWeightingFilter.process(filteredSignal); outputChannel.set(aWeightedSignal); } else { // For other channels, pass the signal without A-weighting outputChannel.set(filteredSignal); } // Check if it's time to update percentiles const currentTime = this.currentTime; if (currentTime - this.lastUpdateTimestamp >= this.updateInterval) { this.updatePercentiles(i); this.lastUpdateTimestamp = currentTime; } } return true; } calculateRMSLevel(signal, channelIndex) { const data = new Float32Array(signal.length); signal.copyFromChannel(data, 0); const sum = data.reduce((acc, val) => acc + val * val, 0); const rmsLevel = Math.sqrt(sum / data.length); const dBLevel = 20 * Math.log10(rmsLevel); // Convert to dB return dBLevel; } updatePercentiles(channelIndex) { for (let i = 0; i < this.centerFrequencies.length; i++) { const analyzer = this.analyzers[i][channelIndex]; const levelData = new Float32Array(analyzer.frequencyBinCount); analyzer.getFloatFrequencyData(levelData); // Calculate percentiles for each octave band and each channel const percentile10 = this.calculatePercentile(levelData, 10); const percentile90 = this.calculatePercentile(levelData, 90); const percentileDiff = percentile10 - percentile90; // Store the percentile difference for each channel and each octave band // You can use suitable data structures to store these values for future comparisons } } calculatePercentile(data, percentile) { const sortedData = data.slice().sort((a, b) => a - b); const index = Math.floor((percentile / 100) * sortedData.length); return sortedData[index]; } combineAndCalculate() { let LAF10_90_total = 0; // Initialize the total LAF10%-90% for (let i = 0; i < this.centerFrequencies.length; i++) { const micAnalyzer = this.analyzers[i][0]; // Analyzer for microphone audio (identifier 0) const audioFile1Analyzer = this.analyzers[i][3]; // Analyzer for audioFile1 (identifier 3) const audioFile2Analyzer = this.analyzers[i][4]; // Analyzer for audioFile2 (identifier 4) // Calculate percentiles for the microphone audio const micPercentile10 = this.calculatePercentile(micAnalyzer, 10); const micPercentile90 = this.calculatePercentile(micAnalyzer, 90); // Calculate percentiles for audioFile1 const audioFile1Percentile10 = this.calculatePercentile(audioFile1Analyzer, 10); const audioFile1Percentile90 = this.calculatePercentile(audioFile1Analyzer, 90); // Calculate percentiles for audioFile2 const audioFile2Percentile10 = this.calculatePercentile(audioFile2Analyzer, 10); const audioFile2Percentile90 = this.calculatePercentile(audioFile2Analyzer, 90); // Calculate LAF10%-90% for microphone audio, audioFile1, and audioFile2 separately const micLAF10_90 = micPercentile10 - micPercentile90; const audioFile1LAF10_90 = audioFile1Percentile10 - audioFile1Percentile90; const audioFile2LAF10_90 = audioFile2Percentile10 - audioFile2Percentile90; // Calculate combined LAF10%-90% for microphone audio, audioFile1, and audioFile2 const combinedLAF10_90 = micLAF10_90 + audioFile1LAF10_90 + audioFile2LAF10_90; // Add the combined LAF10%-90% to the total LAF10_90_total += combinedLAF10_90; } return LAF10_90_total; } } registerProcessor('octave', OctaveBandProcessor);