dev-audioprocessing/public/scripts/octave2.js

154 lines
5.7 KiB
JavaScript

class OctaveBandProcessor extends AudioWorkletProcessor {
constructor() {
super();
// Define center frequencies for 9 octave bands
this.centerFrequencies = [63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000];
this.filters = [];
this.lastUpdateTimestamp = 0;
this.updateInterval = 0.125; // Update every 0.125 seconds
// Create an A-weighting filter for specific frequencies
this.createAWeightingFilter();
// Create bandpass filters for each center frequency
this.centerFrequencies.forEach(frequency => {
const filter = new BiquadFilterNode(audioContext, {
type: 'bandpass',
frequency: frequency,
Q: 1.41, // Set the desired Q value
});
this.filters.push(filter);
});
// Set up analyzers for calculating percentiles
this.setupAnalyzers();
}
createAWeightingFilter() {
// Use the provided A-weighting filter coefficients
const aWeightingCoefficients = [0, -0.051, -0.142, -0.245, -0.383, -0.65, -1.293, -2.594, -6.554]; //David
// Create a custom IIR filter node with the A-weighting coefficients
this.aWeightingFilter = new IIRFilterNode(audioContext, {
feedforward: aWeightingCoefficients,
feedback: [1],
});
}
setupAnalyzers() {
this.analyzers = [];
this.centerFrequencies.forEach((frequency) => {
this.analyzers.push([]);
for (let i = 0; i < 5; i++) { // Unique identifiers from 0 to 4
const analyzer = audioContext.createAnalyser();
analyzer.fftSize = 2048;
// Check if the identifier is 0 (microphone audio) before connecting to the A-weighting filter
if (i === 0) {
this.aWeightingFilter.connect(analyzer);
}
this.analyzers[this.analyzers.length - 1].push(analyzer);
}
})
}
process(inputs, outputs) {
const numOutputChannels = outputs.length;
for (let i = 0; i < numOutputChannels; i++) {
const outputChannel = outputs[i][0];
const inputChannel = inputs[i][0];
// Apply the filter to the input channel
const filteredSignal = this.filters[i].process(inputChannel);
// Apply A-weighting only to the microphone signal (channel 0)
if (i === 0) {
const aWeightedSignal = this.aWeightingFilter.process(filteredSignal);
outputChannel.set(aWeightedSignal);
} else {
// For other channels, pass the signal without A-weighting
outputChannel.set(filteredSignal);
}
// Check if it's time to update percentiles
const currentTime = this.currentTime;
if (currentTime - this.lastUpdateTimestamp >= this.updateInterval) {
this.updatePercentiles(i);
this.lastUpdateTimestamp = currentTime;
}
}
return true;
}
calculateRMSLevel(signal, channelIndex) {
const data = new Float32Array(signal.length);
signal.copyFromChannel(data, 0);
const sum = data.reduce((acc, val) => acc + val * val, 0);
const rmsLevel = Math.sqrt(sum / data.length);
const dBLevel = 20 * Math.log10(rmsLevel); // Convert to dB
return dBLevel;
}
updatePercentiles(channelIndex) {
for (let i = 0; i < this.centerFrequencies.length; i++) {
const analyzer = this.analyzers[i][channelIndex];
const levelData = new Float32Array(analyzer.frequencyBinCount);
analyzer.getFloatFrequencyData(levelData);
// Calculate percentiles for each octave band and each channel
const percentile10 = this.calculatePercentile(levelData, 10);
const percentile90 = this.calculatePercentile(levelData, 90);
const percentileDiff = percentile10 - percentile90;
// Store the percentile difference for each channel and each octave band
// You can use suitable data structures to store these values for future comparisons
}
}
calculatePercentile(data, percentile) {
const sortedData = data.slice().sort((a, b) => a - b);
const index = Math.floor((percentile / 100) * sortedData.length);
return sortedData[index];
}
combineAndCalculate() {
let LAF10_90_total = 0; // Initialize the total LAF10%-90%
for (let i = 0; i < this.centerFrequencies.length; i++) {
const micAnalyzer = this.analyzers[i][0]; // Analyzer for microphone audio (identifier 0)
const audioFile1Analyzer = this.analyzers[i][3]; // Analyzer for audioFile1 (identifier 3)
const audioFile2Analyzer = this.analyzers[i][4]; // Analyzer for audioFile2 (identifier 4)
// Calculate percentiles for the microphone audio
const micPercentile10 = this.calculatePercentile(micAnalyzer, 10);
const micPercentile90 = this.calculatePercentile(micAnalyzer, 90);
// Calculate percentiles for audioFile1
const audioFile1Percentile10 = this.calculatePercentile(audioFile1Analyzer, 10);
const audioFile1Percentile90 = this.calculatePercentile(audioFile1Analyzer, 90);
// Calculate percentiles for audioFile2
const audioFile2Percentile10 = this.calculatePercentile(audioFile2Analyzer, 10);
const audioFile2Percentile90 = this.calculatePercentile(audioFile2Analyzer, 90);
// Calculate LAF10%-90% for microphone audio, audioFile1, and audioFile2 separately
const micLAF10_90 = micPercentile10 - micPercentile90;
const audioFile1LAF10_90 = audioFile1Percentile10 - audioFile1Percentile90;
const audioFile2LAF10_90 = audioFile2Percentile10 - audioFile2Percentile90;
// Calculate combined LAF10%-90% for microphone audio, audioFile1, and audioFile2
const combinedLAF10_90 = micLAF10_90 + audioFile1LAF10_90 + audioFile2LAF10_90;
// Add the combined LAF10%-90% to the total
LAF10_90_total += combinedLAF10_90;
}
return LAF10_90_total;
}
}
registerProcessor('octave', OctaveBandProcessor);